
Growing-cube isosurface extraction algorithm for medical volume data

T.-Y. Lee*, C.-H. Lin

Visual System Laboratory (VSL), Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan,

Republic of China

Received 18 July 2000; accepted 1 December 2000

Abstract

In medical applications, three-dimensional volume data such as CT and MRI are gathered from medical-imaging devices. Marching cube

(MC) algorithm is a common routine to extract isosurfaces from volume data. The MC algorithm generates the massive number of triangles

to represent an isosurface. It is dif®cult to render this amount of triangles in real-time on general workstations. In this paper, we present a

growing-cube algorithm to reduce the number of triangles generated by the MC algorithm. Growing-cube algorithm uses a surface tracker to

avoid exhaustive searching isosurfaces cell-by-cell and, therefore, it saves computation time. During surface tracking, the growing-cube

algorithm adaptively merges surfaces contained in the tracked cells to reduce the number of triangles. Surfaces are merged as long as the error

is within user-speci®ed error thresholds. Therefore, the proposed algorithm can generate a variable resolution of isosurfaces according to

these error parameters. q 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Marching-cube; Growing-cube; Surface tracking and merging; Meta-surface; Surface triangulation

1. Introduction

In medical applications, major sources of three-dimen-

sional volume data are gathered from medical-imaging

devices such as CT, MRI and PET scanners. Generating

polygons to approximate surfaces of organs from 3D

volume data has been widely used by clinicians to visualize,

manipulate and measure three-dimensional internal struc-

tures of patients. Many algorithms [1±4] have been

proposed to generate isosurfaces from volume data.

Among them, the marching cube (MC) algorithm [4] has

been used as a standard isosurface generation algorithm.

Using the MC method, the number of triangles generated

per cell varies from one to ®ve. Therefore, for example, for

given a 512 £ 512 £ 100 medical CT data, the MC algo-

rithm potentially produces the number of triangles varying

from 500 to 2000 K. This sheer amount of triangles is still

prohibitive to achieving a real-time rendering on most work-

stations. In the past, much effort has been made to reduce

this amount. The solutions proposed can be roughly classi-

®ed into two categories. The ®rst class produces triangles

using the MC algorithm, and then employs polygon simpli-

®cation methods to reduce the number of triangles [2,5,6].

In contrast, the second class exploits adaptive techniques

[1,7±10] to reshape the cube size or to down-sample the

volume data set where the isosurface is mostly ¯at. In this

paper, the proposed method, called growing-cube method,

does not reshape nor down-samples volume cells, but it

adaptively generates varying-size surfaces.

Other issues, such as ambiguity problem in the method of

approximating the surface [11±14], the redundant polygon

generation problem [15], and computational speed improve-

ment [8,10,16] have attracted many researchers to work on

them. In this paper, the proposed method can save the number

of triangles as well as save computational timings. In some

situation, not all components of the isosurface are connected.

Bajaj et al. [20] and Westermann et al. [21] resolved this

contour following problem. Growing-cube method fails if

the isosurface has more than a connected component, since

traversal starts from a single seed. Actually, experience with

visualizing our medical applications has shown that most data-

sets have only a connected component. If required, to resolve

this situation, multiple-seeds are allowed to interactively insert

to extract all components of the isosurface.

The remainder of this paper is organized as follow. In the

next section, we will review the most related prior work.

Section 3 will introduce each step of the proposed method in

details. The experimental results for arti®cial data sets

and medical volume data are described and discussed in

Section 4. Finally, we give the summary of this paper in

Section 5.

Computerized Medical Imaging and Graphics 25 (2001) 405±415PERGAMON

Computerized
Medical Imaging

and Graphics

0895-6111/01/$ - see front matter q 2001 Elsevier Science Ltd. All rights reserved.

PII: S0895-6111(00)00084-7

www.elsevier.com/locate/compmedimag

* Corresponding author. Tel.: 1886-6-2757575; fax: 1886-6-2747076.

E-mail address: tonylee@mail.ncku.edu.tw (T.-Y. Lee).



2. Previous work

Van Gelder et al. [16] employed an Octree data structure

to reduce the number of cubes traversed, and thus they

improved the MC's computational ef®ciency. However,

this approach does not reduce the number of triangles gener-

ated by the MC algorithm. In contrast, Ning et al. [8]

attempted to use an Octree to assist in decimating the

number of triangles. However, this algorithm is not very

ef®cient in computation. Shu et al. [7] proposed an adaptive

marching cube (AMC) algorithm to reduce the number of

triangles representing the surface. This method is limited to

data sets of resolutions of the power of two. The initial cubes

are recursively subdivided into eight sub-cubes, if the

approximating surface has high curvature. This approach

has potential to miss small objects inside the cube. Indepen-

dently, Muller et al. [1] proposed a similar approach termed

as splitting-box algorithm. Li et al. [15] improved MC algo-

rithm in two ways. First, this method simply uses the middle

point as the triangle vertices between two adjacent sample

points. Second, it detects the redundant triangles and elim-

inates them. Similarly, Montani et al. [17] proposed a

discretized MC method where the edge intersections are

approximated by edge midpoints. Furthermore, the discre-

tized MC also builds superfaces and simpli®es them. Yagel

et al. [9] proposed an Octree-based strategy to decimate the

number of triangles of MC. Like Ref. [7], this method

requires additional stage to deal with crack patching

problem. However, this method is better than Ref. [7],

since its crack patching does not introduce new triangles.

Park et al. [10] presented a vertex-merging algorithm that

merges the vertices of triangles generated by the MC algo-

rithm at a surface generation step. It is a bottom-to-up

approach, and hence, it avoids cracks and missing small

objects in cube. In this approach, it still exhaustively

searches all cells.

3. Growing-cube algorithm

The growing-cube algorithm consists of three compo-

nents as shown in Fig. 1. The surface tracking searches

each cell through which the isosurface passes instead of

exhaustive searching in the MC algorithm. The connected

surface contained in a searched cell can be merged (or

grown) into a large connected surface called meta-surface.

The surface tracking and meta-surface merging are executed

at the same time. A meta-surface can grow into an arbitrarily

large surface as long as the growing condition is met. Once a

meta-surface cannot grow, we triangulate it and then start

another new meta-surface growing if necessary. Each

component of algorithm is explained in detail below.

3.1. Surface tracking

The MC algorithm generates triangles cell-by-cell to

approximate isosurfaces. The values of grid points and

linear interpretation are used to determine where the isosur-

face intersects an edge of a voxel. In total, there are only 15

topologically different con®gurations, as shown in Fig. 2.

Like Ref. [9], we employ a surface tracker to identify each

cell through which the isosurface passes. The user speci®es

a seed cell that is not an ambiguous con®guration of the MC

algorithm and then the surface tracker starts searching

seed's neighboring cells. For each cell, at most, there are

six tracking directions. Among 15 cases, those cases 0, 1, 2,

3, 5 and 8 do not need to track six neighboring cells. Yagel

et al. [9] pointed that these six cases account for 90% of the

cases encountered in extracting an isosurface in their appli-

cations. Therefore, the tracking approach leads to more

saving in computation. To speed up surface tracking, a

look-up table is created and is used to guide which cells

to visit from a given cell. To create this table, we label

each edge ei [as shown in Fig. 3(a)] and six tracking direc-

tions [as shown in Fig. 3 (b)] for a given cell. This look-up

table is shown in Fig. 4. For example, if a cell is identi®ed

as case 1 of the MC con®gurations, this cell has three

T.-Y. Lee, C.-H. Lin / Computerized Medical Imaging and Graphics 25 (2001) 405±415406

Fig. 1. Three components in the proposed Growing-cube algorithm.

Fig. 2. Topologically different con®gurations of the MC algorithm.



intersected edges, (e1, e2), (e1, e10) and (e2, e10). Then, we

use these three edge pairs as indexes to retrieve tracking

directions from the look-up table. Like (e1, e2), table

[e1, e2]� 1 says the current cell needs to track that cell in

the direction of `1'.

3.2. Meta-surface growing

The user speci®es a seed cell that is not an ambiguous

case of MC method and contains connected triangular

surfaces like cases 2, 5, 8, 9, 11 and 14. Then, the seed

meta-surface attempts to grow into an arbitrary large one

by merging neighboring meta-surfaces contained in neigh-

boring cells. Recursively, this meta-surface growth toward

tracking directions continues until that the growing criteria

are violated. Then, this violated meta-surface can be a new

seed to start another meta-surface growing. During growing,

the normal of the meta-surface is always used and is

computed by ®nding the normal of the best-®t plane for

all triangular patches contained in the cell. Fig. 5 assumes

that a growing meta-surface GM whose normal is

(Nx, Ny, Nz), attempts to merge another meta-surface F

whose normal is (Fx, Fy, Fz) contained in a tracked cell.

The following criteria must be satis®ed for above meta-

surface growth. Once merge is successful, we compute a

new (Nx, Ny, Nz)
1 to represent this new and larger meta-

surface.

1. The angle between (Nx, Ny, Nz) and (Fx, Fy, Fz) must be

less than a threshold, uN.

2. The shortest distance from each triangular patch of F to

GM must be less than a selected threshold, dist. The

above two conditions guarantee two faces are ¯at

enough.

3. We also require the normal of each vertex contained in F

must be similar to (Nx, Ny, Nz). In other words, the angle

between normals must be less than a threshold denoted as

uV. The shading effect is related to vertex normals. This

condition guarantee there is no too much difference in

shading effect between F and GM. In the proposed

approach, we use a meta-surface F to approximate the

connected triangular patches. In some case such as case

5, these connected triangular patches are not very ¯at. It

is not correct to use a meta-surface F to represent them.

This condition avoids this error happening.

T.-Y. Lee, C.-H. Lin / Computerized Medical Imaging and Graphics 25 (2001) 405±415 407

Fig. 3. Edge and direction labeling.

Fig. 4. Look-up table used for surface tracking. Non-existing direction is

marked by `*'.

1 Later in this section, we actually use the normal of a seed-meta-surface

instead.



4. A meta-surface F (i.e. case 1, 2, 5, 8, 9, 11 or 14) must be

connected and then be considered to merge with GM.

Disconnected cases are isolated from the meta-face

growing and their triangular patches are output directly.

5. Both meta-faces F and GM cannot fold over on their

approximating plane. Later, we perform surface triangu-

lation in two-dimension rather than three-dimension. We

need to compute orthogonal projection of vertices of F on

the plane containing GM. If there is some fold-over

occurring, it fails to triangulate the merged surface.

This condition is used to guarantee the correctness of

meta-surface triangulation in the proposed algorithm.

Merging can start if all of the above ®ve conditions are

met. When two faces are allowed to merge, the merging

is simply done by eliminating the shared edge as shown in

Fig. 6. The meta-surface maintains the boundary edges and

internal edges are removed. Later, the surface triangulation

is employed to adaptively add internal edges into the meta-

face. There is an implementation issue about ®nding the

approximated plane. One possible solution is to ®nd the

best approximating plane to contain both meta-surfaces

GM and F for each meta-surface merging. Once a new

face is merged, and then a new approximating plane is

computed. Generally, this computational time grows line-

arly with the number of faces being merged. Each surface

included in the GM and F must be checked against the non-

fold-over rule (condition 5). Assume that there are n faces

merged in ®nal, the merging is computed in O (n2) time.

Therefore, this solution seems not very ef®cient in compu-

tation. To reduce this cost, we alternatively use the plane

containing the seed face rather than compute a newly

approximating plane every-time. From our viewpoint, if

the faces can merge with a given seed face, these merged

faces should be almost on the same plane containing the

seed face. Otherwise, they should not merge. Therefore,

we use this solution instead. Now, we do not need to

compute an approximating plane whenever a new face is

merged. Furthermore, we do not need to re-check all merged

faces against the no-fold-over rule every time. In this

simpli®ed implementation, only the newly meta-surface F

is required to be veri®ed. Therefore, in total, this cost can be

reduced from O (n2) to O (n).

Now, let us present the growing-cube algorithm and its

pseudo-code is outlined in Fig. 7. In this implementation, we

maintain two queues, namely DirQueue and SeedQueue.

For the DirQueue, it records the possible tracking directions

for the current meta-surface. In case that the current cell

cannot merge, this cell is inserted in the SeedQueue instead.

Later, once this cell is pop up from the SeedQueue, and then

it potentially starts a new meta-surface growing. In this

pseudo code, a 3D ¯ag array (i.e. is initialized ¯ag� 0)

exactly the size of the 3D dataset is used. The ¯ag value

of the cell indicates this cell whether it has been tracked

(¯ag� 1), or the cell was in the DirQueue (¯ag� 2) or that

was in the SeedQueue (¯ag� 3). Therefore, this 3D ¯ag

array avoids cells being tracked and queued more than

once. In the inner loop, if the current F satis®es the growing

criteria, we perform face merging. Otherwise, we insert this

cell into the SeedQueue, and later this cell can potentially

start a new meta-surface growing. Whenever the current

meta-surface accomplishes its growth (i.e. leave the inner

loop), we start triangulating the current meta-surface and

output its triangular surfaces. Then, we pop up a new cell

from the SeedQueue and enter the inner loop again. The

above process will not ®nish until both the DirQueue and

the SeedQueue are empty. Note that once ambiguous cases

take place and we employ [22] to solve this ambiguity.

Fig. 8 is an example to show that the proposed algorithm

T.-Y. Lee, C.-H. Lin / Computerized Medical Imaging and Graphics 25 (2001) 405±415408

Fig. 5. Meta-surface growing.

Fig. 6. Face merging.



T.-Y. Lee, C.-H. Lin / Computerized Medical Imaging and Graphics 25 (2001) 405±415 409

Fig. 7. Growing-cube algorithm.



potentially performs better than an Octree-based approach

[9]. In this ®gure, each meta-surface is labeled by a distinct

alphabet. The meta-surface C consists of several small

meta-surfaces contained in nine cells numbered by

C0, C1¼ and C8, respectively. These nine cells can merge

by means of the proposed method. In contrast, the Octree-

based approach generates four smaller meta-surfaces,

(C0, C1), C2, (C3, C4, C5, C6, C7) and C8, respectively. In

this example, there are several similar cases such as meta-

surfaces M and N. Our comment is that the Octree is a good

data structure to organize merging process [9], but also

limits the freedom of merging. From this respect, the

proposed algorithm has an advantage over [9].

3.3. Meta-surface triangulation

We triangulate meta-surfaces in 2D rather than in 3D and

describe this process as follows. First, we project all bound-

ary vertices of a meta-surface on the approximating plane.

Here, the plane of a seed meta-surface is used as the approx-

imating plane. Next, we add internal vertices into the meta-

surface to form several triangular meshes. To ®nd a suitable

triangulation method is essential at this stage. In particular,

this triangulation must handle hole problem. For example, in

Fig. 9, there are several meta-surfaces denoted as S1, S2,¼

and S5 and these meta-surfaces are surrounded by a single

neighboring meta-surface S0. In this situation, while trian-

gulating this meta-face S0, we create a hole. To solve this

problem, we employ [18] to triangulate the meta-surface.

This method was extended [18] from Seidel's fast polygon

triangulation method [19] to handle hole problem.

To directly triangulate the meta-face might be not the best

implementation. Fig. 10(a) shows an example of a typical

meta-surface after merging. In this example, there are many

gear-tooth-like edges appearing in the boundary of the meta-

surface. These gear-tooth-like edges lead to more triangular

surfaces. To avoid this, we use a simple poly-line approx-

imation to best ®t these edges and thus to reduce the number

of gear-teeth as shown in Fig. 10(b). For the poly-line

approximation, we need to set up a distance error, e . If

the distance between a gear-tooth and an approximating

poly-line is within the distance error, this gear-tooth can

be eliminated. After this simpli®cation process, we proceed

to triangulate the meta-surface. Considering all cases of MC

algorithm, those cases 3, 4, 6, 7, 10, 12 and 13 are with

T.-Y. Lee, C.-H. Lin / Computerized Medical Imaging and Graphics 25 (2001) 405±415410

Fig. 8. An example of isosurface extraction.

Fig. 9. Hole occurs in surface triangulation.



disjointed triangular surfaces. Since these triangular

surfaces are located at a given cell, the distance between

two surfaces is very small. If this distance is smaller than the

threshold e , the proposed algorithm potentially merges two

disjointed surfaces by mistake during this border simpli®ca-

tion. For example, in Fig. 8, in cell T0, there are two

disjointed iso-surface contours. If these two surfaces are

merged incorrectly, it becomes a connected isosurface.

This is another reason why we require that a given cell

can be merged if it is a connected surface con®guration of

the MC algorithm.

4. Results and discussions

To evaluate the proposed algorithm, we also implemented

the original MC algorithm and executed both algorithms on

a Pentium II-300 personal computer.2 The following four

datasets were used in our evaluation: (1) 256 £ 256 £ 30

Colon CT dataset (Fig. 11), (2) 128 £ 128 £ 56 CT Head

dataset (Fig. 12), (3) 128 £ 128 £ 128 arti®cial Stomach

dataset (Fig. 13) and 16 £ 16 £ 16 volumetric Cube dataset

(Fig. 14). Table 1 compares the execution time of the

surface tracker and the original MC algorithm. As shown

in this table, the surface tracker always performs faster than

the MC algorithm, and thus the proposed method gains

computational saving. Experimental results show that the

computational saving might not exactly increase with

increasing resolution of datasets. In fact, it depends on the

ratio of the number of non-empty cells over the size of

volume data. To verify this observation, we also show

the ratio information in Table 1. Among these four

datasets, the Colon dataset performs the best due to

T.-Y. Lee, C.-H. Lin / Computerized Medical Imaging and Graphics 25 (2001) 405±415 411

Fig. 10. (a) Gear-tooth-like boundary of meta-surface; (b) boundary simpli®cation.

Fig. 11. CT Colon: (a) the original MC triangular mesh; (b) MC rendering results; (c) Growing-cube, 78% decimation; (d) Growing-cube, 86% decimation;

and (e) the meta-surface of (d) case, where each meta-surface is shaded with different colors.

Fig. 12. CT head: (a) the original MC rendered results; and (b)at 80%

decimating rate, rendered results using Growing-cube.

2 We do not intend to compare the proposed method with the MC method,

since it may be not appropriate. However, it is dif®cult to exactly re-imple-

ment other improved MC methods and to evaluate performance comparison

on different platforms. Therefore, like previous studies [9,10], we use MC

method as a golden standard to evaluate the proposed method.



the lowest ratio of no-empty cells. The isosurfaces

extracted by both MC and surface tracker are identical

for each dataset.

Figs. 11±14 show experimental results for Colon, CT

head, Stomach and Cube datasets. In these ®gures, we repre-

sent different meta-surfaces with different colors to observe

the growing results of the meta-surface. Table 2 shows

various thresholds used in these four experiments. These

thresholds are de®ned in Section 3.2 (growing criteria).

Table 3 shows the timing breakdown of these experimental

results. In this table, the time taken in building meta-surface

includes both surface-tracking and growing timings.

Compared with the original MC algorithm, the total cost

of the proposed method is increased by about 36% for

colon, 65% for CT head, 26% for Stomach and 9% for

Cube dataset, respectively. However, we can achieve very

high decimation rates such as 86% in colon, 79% in CT

head, 69% in Stomach and 94% in Cube. Rendered results

of Stomach dataset, for example, for non-decimation

[Fig. 13(f)] and decimation models [Fig. 13(g)±(j)] are

very similar in the visual quality. However, the number of

triangles decimated is very high up to 69%. In Table 3, we

also show the number of meta-surface and triangles gener-

ated. These numbers show a consistent trend: as specifying

larger thresholds in Table 2, we can generate less number of

T.-Y. Lee, C.-H. Lin / Computerized Medical Imaging and Graphics 25 (2001) 405±415412

Fig. 13. Stomach: (a) the original MC triangular mesh; (b)±(f) by the Growing-cube method at 49, 54, 61 and 68% decimating rates, respective and (f)±(j) the

rendered results of (a)±(e), respectively.

Table 1

Computational saving of the surface tracker

Dataset method Execution time (s)

Colon (256 £ 256 £ 30) Head (128 £ 128 £ 56) Stomach (128 £ 128 £ 128) Cube (16 £ 16 £ 16)

MC 3.55 12.34 10.01 0.11

Tracking 0.68 6.46 6.74 0.06

Saving (%) 80.8 47.7 32.26 46.5

Ratio (%) 5.16 12.91 20.5 11.28

Table 2

Various thresholds used in Colon (Fig. 11), CT head (Fig. 12), Stomach

(Fig. 13) and Cube (Fig. 14) datasets

Plane normal (uN) Vertex normal (uV) Dist (pixel)

Fig. 11(c) 118 158 0.6

Fig. 11(d) 158 208 1.6

Fig. 12(b) 108 158 1.1

Fig. 13(b) 188 158 0.4

Fig. 13(c) 258 308 0.5

Fig. 13(d) 358 358 0.5

Fig. 13(e) 358 358 1.2

Fig. 14(c) 18 308 0.1

Fig. 14. Cube: (a) the original MC triangular mesh; (b) MC triangular wire-frame, (c) and (d) are wire-frames of meta-surface and triangular mesh at 94%

decimating rate using Growing-cube method; and (e) shows the same meta-surface but encoded in different colors.



meta-surface and triangles. For example, when the larger

thresholds are used for colon dataset [Fig. 11 (c) and (d)],

the decimating rate is obviously increased from 78 to 86%.

Other datasets such as CT head [Fig. 12(b)] and Stomach

[Fig. 13(g)±(j)], have the same trend in decimating rate.

To demonstrate the ability of decimation, we use a volu-

metric Cube dataset to evaluate the proposed method, too.

Fig. 14 shows different representations of the Cube dataset.

In this example, each face of cube is successfully grown into

a single meta-surface, and each meta-surface is triangulated

into two triangular surfaces. However, for vertices on or

near to the edges [as indicated by a circle in Fig. 14(c)],

because of large difference in uV., we need to increase uV. up

to 308 in our experiments. For the non-edge vertices, we just

need to set a smaller uN., say 18. Then, we can signi®cantly

decimate them in this example.

Next, we would like to measure accuracy of surface

representations generated by the proposed method. For

this purpose, we compare the difference in term of a voxel

width between surfaces generated by the Growing-cube

(GC) and the original MC algorithm. For above four experi-

ments, Fig. 15(I)±(IV) visualize this measurement using

color code and this color-coded visualization can help us

understand to qualify the error introduced by the proposed

method in global fashion. In each color bar, the lower (red)

means the higher error introduced and the higher (blue)

means the lower error generated. In each ®gure, we also

indicate the average error in term of the width of a voxel.

From these ®gures and their average errors, we can see the

Growing-cube algorithm can signi®cantly decimate the

number of triangles as well as can preserve good quality

of surfaces. For example, in Fig. 15(I), as we decimate

86% of triangles in the original Colon triangles, the average

error introduced by the Growing-cube (GC) is 0.185 voxel

width. Among these four examples, the Cube case performs

the best. The average error is zero, so the color code (IV) of

Cube is all blue.

5. Summary

In this paper, we present a Growing-cube algorithm to

improve implementation of the MC algorithm. The

proposed approach includes an adaptive decimation techni-

que to generate various resolutions of models according to

user-speci®ed thresholds. It tracks connected surfaces

instead of exhaustive searching iso-surfaces cell-by-cell.

Therefore, it saves computation timing in identifying iso-

surfaces. For our four test datasets, this saving varies from

30 to 80%. We conclude this gain is in inverse proportion to

the ratio of non-empty cells over the entire volume cells.

The lower ratio it is, the more ef®ciency it gains. The

complete isosurface generated by the surface tracker is iden-

tical to that of MC method. Additionally, the proposed algo-

rithm does not require additional data structure like Octree

to speed up traversing cells [16] or to decimate triangular

mesh [8,9]. From our experimental results, we ®nd that the

visual quality of rendering for both non-decimated and deci-

mated models is nearly indistinguishable. For example, see

rendered results for Stomach dataset. Therefore, compared

with that of the MC method, we can use decimated models

instead in our applications to save rendering time, too. Addi-

tionally, the total execution cost of the proposed algorithm

is increased ranging from 9 to 65 % for all experiments,

while we achieve decimating rate varying from 78 to

94%. From this respect, it is quite cost-effective. Some

work can be done in near future. For example, in the current

implementation, the proposed method grows face in a

greedy manner. The greedy approach might be a sub-opti-

mal method only. In future, we will develop a strategy to

optimize our growing stage.

Acknowledgements

This work is supported in part by NSC-89-2218-E-006-

028, National Science Council, Taiwan, Republic of China.

T.-Y. Lee, C.-H. Lin / Computerized Medical Imaging and Graphics 25 (2001) 405±415 413

Table 3

Timing breakdown of experimental results for Colon (Fig. 11), CT head (Fig. 12), Stomach (Fig. 13) and Cube (Fig. 14) datasets

Execution time(s)

Building meta-surface Triangulation Total time Number of meta-surfaces Number of triangles Decimation rate (%)

Fig. 11(b) ± ± 3.55 ± 23358 ±

Fig. 11(c) 3.42 1.82 5.24 482 5113 78.11

Fig. 11(d) 3.13 1.73 4.86 282 3323 85.78

Fig. 12(a) ± ± 12.34 ± 96548 ±

Fig. 12(b) 11.21 9.21 20.42 9566 20124 79.51

Fig. 13(a) ± ± 32.32 ± 72652 ±

Fig. 13(b) 29.12 15.01 44.13 11146 36332 49.99

Fig. 13(c) 28.01 14.87 42.88 7933 32704 54.98

Fig. 13(d) 27.45 14.12 41.57 6446 27894 61.60

Fig. 13(e) 26.85 13.85 40.70 5197 22613 68.87

Fig. 14(a) ± ± 0.11 ± 764 ±

Fig. 14(d) 0.10 0.02 0.12 26 44 94.25



References

[1] Muller M, Stark M. Adaptive generation of surfaces in volume data.

The Visual Computer 1993;9:182±99.

[2] Schroeder WJ, Zarge J, Loresen WE. Decimation of triangle meshes.

Computer Graphics 1992;26:65±70.

[3] Wyvill G, McPheeters C, Wyvill B. Data structure for soft objects.

The Visual Computer 1986;2:227±34.

[4] Lorensen W, Cline H. Marching cubes: a high resolution 3-D surface

construction algorithm. Computer Graphics 1987;21:163±169.

[5] Hoppe H, DeRose T, Duchamp T. Mesh Optimization. Computer

Graphics Proceedings, Annual Conference Series, 1993. p. 19±26.

[6] Turk G. Re-tiling polygon surfaces. Computer Graphics 1992;26:55±64.

[7] Monhan S, Shu KR, Zhou C. Adaptive marching cubes. The Visual

Computer 1995;11:202±17.

[8] Ning P, Hesselink L. Octree pruning for variable-resolution isosurfaces.

In: Computer Graphics International, Tokyo, June 1992. pp. 22±6.

[9] Shekhar R, Fayyad E, Yagel R, Cornhill JF. Octree-based decimation

of marching cubes surfaces. IEEE Visualization, 1996. pp. 335±449.

[10] Oh KM, Park KH. A vertex merging algorithm for extracting a

T.-Y. Lee, C.-H. Lin / Computerized Medical Imaging and Graphics 25 (2001) 405±415414

Fig. 15. The visualization of error introduced by the Growing-cube (GC) method using color code for four experiments. In these ®gures, we also indicate the

average error introduced in terms of the width of a voxel. For colour illustration, please see http://couger.csie.ncku.edu.tw/~vr/G_cube.html



variable-resolution isosurface from volume data. IEEE International

Conference on System Man and Cybernetics, Vol. 4, 1995. pp. 3543±8.

[11] Baker HH. Building surfaces of evolution: the weaving wall. Int J

Computer Vision 1989;3:51±71.

[12] Cline HE, Lorensen WE, Ludke S, Crawford CR, Teeter BC. Two

algorithms for the three-dimensional reconstruction of tomograms.

Med Phys 1988;15:320±7.

[13] Durst MJ. Additional reference to marching cubes. Computer Graph

1988;22:72±73.

[14] Nielson GM, Hamann B. The asymptotic decider: resolving the ambi-

guity in marching cubes. In: Proceedings of Visualization 1991

Conference, San Diego, CA, 1991. pp. 83±91.

[15] Li J, Agathoklis P. An ef®ciency enhanced isosurface generation

algorithm for volume visualization. The Visual Computer

1997;13:391±400.

[16] Wilhelms J, Van Gelder A. Octree for faster isosurface generation.

ACM Trans Graph 1992;11:201±27.

[17] C. Montani, R. Scateni, R, Scopigno. Discretized Marching Cubes.

IEEE Conference on Visualization, 1994. pp. 281±7.

[18] Manocha D, Narkhede A. Fast polygon triangulation based on

Seidel's algorithm, 1995. http://www.cs.unc.edu/~dm/CODE/GEM/

chapter.html.

[19] Seidel R. A simple and fast incremental randomized algorithm for

computing trapezoidal decompositions and triangulating polygons,

computational geometry: theory and applications, 1991. pp. 51±64.

[20] Bajaj et al. Fast isocontouring for improved interactivity. In: Pro-

ceedings of 1996 Symposium on Vol. Vis., San Francisco, October

1996.

[21] Westermann, et al. Real-time exploration of regular volume data by

adaptive reconstruction of isosurfaces. The Visual Computer

1999;15:110±1.

[22] Nielson GM, Hamann B. The asymptotic decider: resolving the ambi-

guity in marching cubes. In: IEEE Conference Visualization 1991.

pp. 83±91.

T.-Y. Lee, C.-H. Lin / Computerized Medical Imaging and Graphics 25 (2001) 405±415 415

Tong-Yee Lee was born in Tainan county, Taiwan, Republic of China,

in 1966. He received his BS in Computer Engineering from Tatung

Institute of Technology in Taipei, Taiwan, in 1988, his MS in Computer

Engineering from National Taiwan University in 1990, and his PhD in

Computer Engineering from Washington State University, Pullman, in

May 1995. Now, he is an Associate Professor in the Department of

Computer Science and Information Engineering at National Cheng-

Kung University in Tainan, Taiwan, Republic of China. He was with

WSU as a Visiting Research Professor at School of EE/CS during 1996

summer and serves as guest associated editor for IEEE Transactions on

Information Technology in Biomedicine in 2000. He has been working

on parallel rendering and computer graphics since 1992, and has

published more than 65 technical papers in referred journals and

conferences. His current research interests include computer graphics,

medical visualization, virtual reality, surgical simulation, distributed

and collaborative virtual environment, parallel processing and hetero-

geneous computing.

Chao-Hung Lin was born in Koushung, Taiwan, Republic of China, in

1973. He received his BS in Computer Science/Engineering from Fu-

Jen University and MS in Computer Engineering from National Cheng-

Kung University, Taiwan, Republic of China, in 1997 and 1998, respec-

tively. Now, he is pursuing his PhD degree at Department of Computer

Science and Information Engineering, National Cheng-Kung Univer-

sity. Mr Lin research interests include computer graphics, image

processing, virtual reality, visualization and interactive rendering.


